Oak Ridge IFRC

Bioreduction of Uranium with Slow Release Substrates

Presenter: David Watson

ERSP Annual PI Meeting
Lansdowne, Virginia
April 20, 2009
Objectives

• Conduct laboratory and field studies and modeling of slow release substrates:
 – Ca-oleate precipitates and emulsified vegetable oils
 – Is reduction of U(VI) and nitrate possible?
 – Is it sustainable?

• Assess substrate delivery and subsurface distribution issues

• Test direct and remote sensing measurement methods
Tasks and Contributors

- Task leaders – David Watson (ORNL) and Weimin Wu (Stanford)
- Batch rate studies to assess substrates - Weimin Wu (Stanford)
- Column break through and electrical resistivity studies (LBNL) – Yuxin Wu and Susan Hubbard
- Bromide tracer test and injection of emulsified vegetable oil (ORNL) – Field, lab, analytical and data analysis support: Tonia Mehlhorn, Kenneth Lowe, Sally Mueller, Jana Phillips, Kirk Hyder and Jennifer Earles
- Surface ERT geophysics (UT) – Greg Baker et. al.
- PELCAPs and dissolved gases (ORNL) – Brian Spalding and Jennifer Earles
- Microbiology (ORNL) – Chris Schadt and Gengxin Zhang
- Spectrographic (ANL) – Ken Kemner and Max Boyanov
- Modeling (ORNL) – Fan Zhang
Site Conditions

Low pH Shale Path
- High U (5 – 60 ppm)
- Tc99 (>5000 pCi/L)
- Nitrate (<200 – 50,000 ppm)
- Low pH (3.2 – 5.5)
- High DOC (200 ppm)

Gravel Path
- U (1 ppm)
- Tc99 (<100 pCi/L)
- Low NO₃ (40 ppm)
- High pH (6.5)
- Low DOC (<50 ppm)
Past studies suggest need to explore substrates that can sustain reducing conditions and decrease costs

“Scheibe” Site
- Daily injections of ethanol for 1 year
- U conc. below MCL of 0.03 mg/L can be achieved
- Rapid rebound observed when injections stopped in 09/2006
Remobilization of U during storm event within previously bioreduced zone

- 4” rain event from 37-73 hours
- Depth dependent sulfate response
- Outside bioreduced zone
 - U response
 - GW836
- Within bioreduced zone
 - DP13
 - MLSE
Laboratory Studies
(with site GW and core material)

Acetate production from ethanol, Ca-
oleate precipitates, and emulsified vegetable oil (EVO)

The rate of acetate accumulation suggests that EVO degradation is slow compared to other substrates

The acetate production for all substrates depends on initial sulfate concentration.
Laboratory Studies

U(VI) reduction by ethanol, oleate, and EVO

The rate of U(VI) removal in microcosms: ethanol > oleate >> EVO.

U speciation using XANES showed significant (>50%) U(IV).

From 16s analysis we infer that *Desulforegula* oxidizes EVO and Ca-oleate and reduces sulfate with by-products of short fatty acids and hydrogen sulfide. The biogenerated hydrogen sulfide of FeS may abiotically reduce U(VI).
Effects of Donor Amendments and Sulfate Conc. on Delta-Proteobacteria Populations different for SRS and oleate compared to control and ethanol
Field Experiments

- 900 gallons of a 20% SRS™ solution (mixed with site GW) injected in 3 wells in @1.5 hours on 2/9/09

-Bromide tracer test (450 ppm) conducted on 12/8/09 in similar manner to SRS injection

5.9 times the amount of COD injected in 2 hours than for the entire year of ethanol injections

SRS™ composition

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soybean oil (%)</td>
<td>60</td>
</tr>
<tr>
<td>Yeast extract (%)</td>
<td>0.3</td>
</tr>
<tr>
<td>Surfactant (%)</td>
<td>6</td>
</tr>
<tr>
<td>(NH₄)₃PO₄ (%)</td>
<td>0.05</td>
</tr>
<tr>
<td>Remainder water</td>
<td></td>
</tr>
<tr>
<td>Density (kg/L)</td>
<td>0.93</td>
</tr>
<tr>
<td>COD (g/L)</td>
<td>1620</td>
</tr>
</tbody>
</table>

Long chain fatty acids
- palmitic
- stearic
- oleic
- linolenic
- linoleic
- arachidic

GC scan of SRS™

Standards
Br and SRS injections

- Electrical resistivity surface arrays for tracking SRS plume
- Stirring buckets of SRS
- Sampling >50 GW wells and seeps
Volatile solid (VS) analysis by oven drying and ashing (Borden, 2007)

- Visual indicator of % SRS
- Specific conductance (both bromide and SRS solutions have a signal), pH, DO
- Sulfide odor
- Field Hach kit (nitrite, Fe(II), sulfide, COD)
- Volatile solids by drying/ashing
- IC (anions), ICP/MS (metals), TIC/TOC after SRS lower and indication of bioreduction

Fluid conductivity of SRS mixture

This will serve as reference plot for dilution
Comparison of Br to SRS C/\(C_0 \) concentration contours

- Highest concentration port used for MLS wells
- Fewer time intervals sampled for SRS
- General distribution through center of well field
- SRS slower and more to the left (Impact of SRS floating?)
- Poorly constrained downgradient but reached creek
Comparison of Br to SRS C/\nC_0 concentration contours

No data for
this time step
Comparison of Br to SRS C/\(C_0\) concentration contours
Comparison of Br to SRS C/\(C_0\) concentration contours

Max Bromide 7.17 hours after injection

7 hours after SRS Injection
Comparison of Br to SRS C/C₀ concentration contours

Max Bromide 12.3 hours after injection

11 hours after SRS Injection
Comparison of Br to SRS C/C_0 concentration contours

No data for this time step
Comparison of Br to SRS C/ \(C_0 \) concentration contours

No data for this time step
Comparison of Br to SRS C/C₀ concentration contours
Comparison of Br to SRS C/C₀ concentration contours

Legend
- 0 - 0.007
- 0.007 - 0.03
- 0.03 - 0.07
- 0.07 - 0.12
- 0.12 - 0.2
- 0.2 - 0.3
- 0.3 - 0.4
- 0.4 - 0.6
- 0.6 - 0.8
- 0.8 - 2

Max Bromide 32.78 hours after injection

Legend
- VS C/C₀
- 0 - 0.007
- 0.007 - 0.03
- 0.03 - 0.07
- 0.07 - 0.12
- 0.12 - 0.2
- 0.2 - 0.3
- 0.3 - 0.4
- 0.4 - 0.6
- 0.6 - 0.8
- 0.8 - 2

32 hours after SRS Injection
Comparison of Br to SRS C/\[C_0\] concentration contours

No data for this time step
Comparison of Br to SRS C/C_0 concentration contours

Max Bromide 50.59 hours after injection

50 hours after SRS Injection
Comparison of Br to SRS C/ C_0 concentration contours

No data for this time step
Comparison of Br to SRS C/
C_0 concentration contours

No data for this time step
Comparison of Br to SRS C/C₀ concentration contours

Max Bromide 79.18 hours after injection

74 hours after SRS Injection
Comparison of Br to SRS C/ C_0 concentration contours

No data for this time step
Comparison of Br to SRS C/C₀ concentration contours
Comparison of Br to SRS C/\(C_0 \) concentration contours
Comparison of Br to SRS C/\(C_0\) concentration contours

No data for this time step
Comparison of Br to SRS C/C_0 concentration contours

Max Bromide 168.26 hours after injection

174 hours after SRS Injection
Surface electrical resistivity tomography surveys
Surface electrical resistivity tomography surveys

SRS Injection. Injection Began ~8am on 2/9
Shown are TLERT sections, all differenced from a pre-injection ERT section

Notes: Survey duration is ~8 hours
Integrated dipole-dipole and Wenner/Schlumberger survey, 0.75 m electrode spacing.
SRS breakthrough compared to Br suggests SRS floating

Maximum detected bromide
Reduction of U achieved!

Initial zone of >80% U reduction

Current zone after 70 days

Release of Fe from solid phase cause of initial increase in U?
Acetate produced and nitrate removed

Initial zone of >80% U reduction

Current zone after 70 days

Small rebound in nitrate to 1 ppm

Yeast extract use?

Oil use?

Sulfate

Nitrate

Acetate
In Situ Groundwater communities during SRS stimulation in our initial analysis using 16S libraries

Delta Proteobacteria increased in abundance through stimulation timecourse

Like the bottle tests Desulforegula and Geobacter are present together. Likely a syntrophic interaction where Desulforegula ferments fatty acids to acetate used by Geobacter

Desulforegula conservatrix (Rees and Patel, IJSEM, 2001)
XANES analysis of surge samples

- Up to 85% U(IV) measured in downgradient monitoring wells
- U(VI) observed in control samples

Control | 4 m | 5 m | 10 m

<table>
<thead>
<tr>
<th>No.</th>
<th>Sample ID</th>
<th>U (mg/kg)</th>
<th>U6%</th>
<th>U4%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>FWB-124 core 17-20 section #1 (before)</td>
<td>nd</td>
<td>90</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>FW202 3/17/09 (after)</td>
<td>nd</td>
<td>85</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>FW215 1/16/09 Control, before</td>
<td>nd</td>
<td>95</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>FW215 3/17/09 (Control, after)</td>
<td>519.4</td>
<td>95</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>FW216 1/27/09 (before)</td>
<td>112.4</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>FW234 1/16/09 (before)</td>
<td>nd</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>FW234 from 3/12/09 (after)</td>
<td>441.9</td>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>8</td>
<td>FW234 core March 2009 (after)</td>
<td>nd</td>
<td>55</td>
<td>45</td>
</tr>
<tr>
<td>9</td>
<td>GP01 1/16/09 (before)</td>
<td>nd</td>
<td>90</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>GP01 3/17/2009 (after)</td>
<td>96.4</td>
<td>15</td>
<td>85</td>
</tr>
<tr>
<td>11</td>
<td>GP03 1/16/09 (before)</td>
<td>nd</td>
<td>85</td>
<td>15</td>
</tr>
<tr>
<td>12</td>
<td>GP03 3/17/09 (after)</td>
<td>152.3</td>
<td>15</td>
<td>85</td>
</tr>
</tbody>
</table>
Significant reduction of U concentration in seeps and flux to Bear Creek observed

Seep is 50 meters from injection wells
Bioreduction of Uranium with Slow Release Substrates

Conclusions

- EVO injection achieved sequential reduction of nitrate, Fe(III), sulfate and U(VI) in the subsurface. Acetate was generated after about 2 weeks. U(VI) reduction to U(IV) was confirmed by XANES analysis.
- Microbial community depends on electron donor source and sulfate concentration but *Desulforegula* seems to play an important role in oil breakdown.
- Comparison of bromide to oil breakthrough curves suggests some floating of the SRS occurs.
- Reducing conditions have been sustained for over 70 days and has significantly reduced U flux to Bear Creek the primary exit pathway at the site.
- Oil droplet size is important consideration for subsurface delivery.
- Identified effective monitoring techniques that we will use to continue to monitor response.