Microbial Communities in the Vadose Zone

Fred Brockman
Pacific Northwest National Laboratory
April 18, 2005
Unique Properties of Vadoze Zone

- Presence of gas phase
- Water is in thin films & wedges
- Variable water content
- Transient preferential flow
- Flow bypass
If you were a subsurface microbe, where would you want to live?
% Culturability in Different Settings

- Surface
- ECP aquifers
- ECP vadose
- ECP aquitard
- AW aquitard
- AW vadose

ECP = Eastern Coastal Plain
AW = Arid West

Median % of viable cells that were cultured
Median % of AODC cells that were cultured
Relative Activity

In Situ CO$_2$ Production (after Kieft and Phelps, 1997)

- **Surface soils**
- **Lake sediments**
- **Deep sea sediments**
- **Aquifers; High recharge vadose zones**
- **Aquitards**
- **Low recharge vadose zones**
- **Deep rocks; deep consolidated sediments**
Hydrologic Controls (Climate) on Microbiological Properties in the Vadose Zone

<table>
<thead>
<tr>
<th></th>
<th>Low recharge</th>
<th>High recharge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Live cells/g</td>
<td>10^4-10^5</td>
<td>10^7</td>
</tr>
<tr>
<td>Cultured cells/g</td>
<td><10^1-10^2</td>
<td>10^5-10^6</td>
</tr>
<tr>
<td>Spatial distribution</td>
<td>No activity in many 0.1 and 1 g samples; activity in some 10 g and most 100 g samples</td>
<td>All 0.1 g samples active</td>
</tr>
</tbody>
</table>

Activity (% mineralization)

- **60%**

4 wks

![Graph showing activity over time](image)
Spatial Heterogeneity

Heterogeneity exists at multiple scales

- Important scale that is the one that dominates the behavior of the system
What Do the Nondetects Mean?

Viable biomass at all sites = $10^3 - 10^4$ cells/g (75 g)

14C- mineralization

- Detection requires $\sim 10^5$ cells/g
- Nondetects = inability to increase population 10- to 100-fold

Nearly all non-mineralized substrate can be recovered by leaching/filtration

- Not going to storage products
- Little to no colonization occurs

More sensitive assay needed to detect growth

- 3H-acetate incorp. into lipids can detect synthesis of 100s of cells/g
Local conditions supportive of growth become more rare as recharge decreases or age increases.

Microorganisms at the low recharge sites appear to have experienced extensive local extinctions.
Correlation to Hydrologic & Physical Properties

- Nondetects, variance, portion of variance not explained by spatial dependence, and averaging scale decrease:
 - with increasing recharge
 - With increasing age of sediment and groundwater
- In low recharge areas, activity higher in fine-grained sediments
 - Higher connectivity of water increases nutrient capture area for isolated microbes
 - Organic carbon content positively correlated to smaller grain size
- In high recharge areas, activity higher in coarse grained, high permeability units
 - Higher flux of surface-derived nutrients
Community Composition

Shallow Eastern: Wide range of Gram negative and Gram positive

Shallow arid: Largely Actinobacteria and Firmicutes (Gram positives)
Gram negatives

Deep arid: Largely Actinobacteria
Some Firmicutes and Sphingomonas
Gram negatives rare

Stimulation by organics in arid: Gram negatives esp. *Pseudomonas*

Stimulation by oxygen and mixing in arid: Largely Actinobacteria
Remediation Potential of Arid Sites

Hurdles:
• Patchy distribution
• Degraders present?

Requires:
• Resuscitation
• Orders of magnitude increase in biomass and activity
• Degraders must compete well in stimulated system
Chromium Bioremediation in Unsaturated Flow Columns

Cumulative Cr immobilized in the columns based on analysis of fluids and solids by FAA and XRF spectroscopies, respectively.
‘Aerobic’ Gaseous HC and CT Degradation in Deep Vadose Zone Sediments

Hole 1, top panel; hole 2, bottom panel. Results are after 10 months of incubation.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>methane</th>
<th>ethane</th>
<th>propylene</th>
<th>propane</th>
<th>butane</th>
<th>carbon tetrachloride</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH₄NO₃/K₂HPO₃, n=16</td>
<td>3</td>
<td>11</td>
<td>12</td>
<td>11</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>N₂O/TEP/TBP, n=9</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>no nutrient, n=12</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td># of positive bottles ---></td>
<td>4</td>
<td>12</td>
<td>14</td>
<td>11</td>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>% of positive bottles ---></td>
<td>11%</td>
<td>32%</td>
<td>38%</td>
<td>30%</td>
<td>35%</td>
<td>3%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Treatments</th>
<th>methane</th>
<th>ethane</th>
<th>propylene</th>
<th>propane</th>
<th>butane</th>
<th>carbon tetrachloride</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH₄NO₃/K₂HPO₃, n=16</td>
<td>2</td>
<td>10</td>
<td>13</td>
<td>9</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>N₂O/TEP/TBP, n=11</td>
<td>1</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>no nutrient, n=11</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td># of positive bottles ---></td>
<td>4</td>
<td>17</td>
<td>22</td>
<td>17</td>
<td>19</td>
<td>3</td>
</tr>
<tr>
<td>% of positive bottles ---></td>
<td>11%</td>
<td>45%</td>
<td>58%</td>
<td>45%</td>
<td>50%</td>
<td>8%</td>
</tr>
</tbody>
</table>

- 50% of positive samples removed >90% of one or more gases
- Generated populations of 10⁷-10⁸/g
- With addition of CT-degrading *Pseudomonas* and nitrate, CT removed in 20% of bottles
Colonization in Static Unsaturated Columns

- Effect of sand size and vWC on bacterial movement after 24 hr in the absence of acetate as carbon source.
- Each panel shows bacterial profiles for the 4 sands.
- *Pseudomonas stutzeri* KC and *Pseudomonas fluorescens* HK44

<table>
<thead>
<tr>
<th>Diameter in mm</th>
<th>0.71</th>
<th>0.53</th>
<th>0.36</th>
<th>0.21</th>
</tr>
</thead>
<tbody>
<tr>
<td>20/30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30/40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40/50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50/70</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Acetate Driven Colonization
in a Poorly-Sorted Non-Spherical Hanford Sand

20% vWC. Panel A, 24 hr; panel B, 7 days.
• Decreasing values at smaller grain diameters are due to decreasing minimum water film thickness in the connected pore water, which restrict bacterial motility.

• The random motility coefficients (0.005 to 0.1 cm2/hr, equal to 1.4×10^{-6} to 2.8×10^{-5} cm2/sec) are in the same range as those found for saturated systems (3.5×10^{-6} to 3.5×10^{-5} cm2/sec).
Physical heterogeneities (two coarse-grained sloping sand wedges in a chamber of finer sand, bright blue) cause locally variable water saturation during unsaturated water flow, which will impact the ability of microbes to colonize the vadose zone in response to nutrient delivery.
Real-time Monitoring of CO$_2$ Movement

(as a proxy for tracking movement of gaseous microbial nutrients)

Migration of carbon dioxide at the left-hand sparging stone at a constant rate of 110 mL/h. Image times are (L to R) 4.5 minutes, 10.5 minutes, and 20 minutes.
Support From

EMSP

NABIR

Microbial Genome Program
EXTRAS FOLLOW
What Are The Major Controls?
(and How do they change with time?)

- Biodegradability
 - Degrader # & distribution
 - Microscale co-location
 - Adaptation
 - Residence time

- Bioavailability
 - Sorption
 - Weathering
 - Toxicity

- Habitability
 - Levels of available nutrients
 - Ability to colonize/adapt to change
 - Functional diversity
 - Functional redundancy

Organisms

Environment

Pollutant
2. Why Do We Need to Know More?

Applied
- Geochemical characterization is less expensive than microbial
- Use of proxy information reduces future characterization needs & costs
- Enable predictive models for extrapolation to similar sites

Basic
- Verify/test ecological principles & conceptual models
- Our conceptual models don’t explain important observations …
 - suggesting we don’t understand some of the important controls
- We continue to discover microbes are highly versatile chemists
 - they ‘understand’ basic chemistry better than we do
Continuing Problems

Measurement
- Sample frequency
- Sample size
- Frequency and size of ‘hotspots’

Multiplicative effects between overlapping properties that are non-homogenously distributed (spatial heterogeneity)

Microbes can ‘run different programs’

Unknown physiologies
- Arise from poor ability to culture
- Knowledge best achieved by growth & experimentation

Poor understanding of impact of microbial interactions
- Anaerobic methane oxidation
- Anaerobic ammonia oxidation

Stove-piping of disciplines
Routes to Improved Prediction & Mapping of Microbial Properties

Development of a comprehensive conceptual model
- Hydrogeochemical categories approach
- Ecological principles, e.g., Thresholds
- Flow and transport codes coupled to thermodynamics
- Formulating and testing hypotheses

Inexpensive microscale sampling of groundwater for donors, acceptors, and micronutrients

Instrumented in situ microcosms

Greater use of geostatistics to evaluate spatial dependence

Technologies to culture novel microbes

Genomic sequencing, bioinformatics, and metabolic modeling
- Isolates
- Community DNA
- Community mRNA and proteomics
Transect Sampling

Regularly-spaced samples (every 5 cm)

50-100 samples

Intact, 10-15 g → Homogenized and 1 g assayed

100 nmoles each of 14C-glucose & 14C-acetate in 0.1 ml water

Incubated 4 wks
50 1-g sample size at 0.33 cm intervals in core

100 nmoles each of 14C-glucose & 14C-acetate in 0.1 ml water

3H-acetate into lipids (1 nmol in 0.1 ml water)
(synthesis of 100s of cells)

Incubated 4 wks (14C), 1 d (3H-gluc),
days to wks (3H-acet)
Chronosequence Site

Aggrading landscape with many ancient buried soils

Known sediment and groundwater ages
 • modern - 700,000 yrs (sed)
 • 0 - 900 yrs (gw)

Hypothesis:
As sediment & groundwater age increases, microbial activity will become more discontinuous and its averaging scale will increase
Transect Results

(100 nmol each of glucose & acetate)

<table>
<thead>
<tr>
<th>Groundwater age (actual years)</th>
<th>1</th>
<th>60</th>
<th>130</th>
<th>200</th>
<th>90</th>
<th>625/</th>
<th>725/</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sediment age (thousands of years)</td>
<td>Modern</td>
<td>35</td>
<td>80</td>
<td>90</td>
<td>90</td>
<td>455/</td>
<td>495/</td>
</tr>
<tr>
<td>Nondetects</td>
<td>0%</td>
<td>0%</td>
<td>86%</td>
<td>54%</td>
<td>98%</td>
<td>95%</td>
<td>100%</td>
</tr>
<tr>
<td>Mean</td>
<td>37%</td>
<td>38%</td>
<td>0.03%</td>
<td>8.6%</td>
<td>0.01%</td>
<td>0.02%</td>
<td>0%</td>
</tr>
<tr>
<td>St. dev.</td>
<td>7%</td>
<td>31%</td>
<td>233%</td>
<td>149%</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Nugget (%²)</td>
<td>3</td>
<td>60</td>
<td>--</td>
<td>115</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Averaging scale expmt.</td>
<td>0.1 g</td>
<td>1 g</td>
<td>100 g</td>
<td>10 g</td>
<td>100 g</td>
<td>100 g</td>
<td>>100 g</td>
</tr>
</tbody>
</table>

Discontinuity (nondetects, variance, and portion of variance not explained by spatial dependence) increases with age
Activity and Spatial Structure

<table>
<thead>
<tr>
<th></th>
<th>Extremely low</th>
<th>Low</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>28 d</td>
<td>56 d</td>
<td>2 d (14 d)</td>
</tr>
<tr>
<td>Nondetects</td>
<td>76%</td>
<td>65%</td>
<td>0%</td>
</tr>
<tr>
<td>Mean of detects</td>
<td>2.5%</td>
<td>0.94%</td>
<td>7.8%</td>
</tr>
<tr>
<td>St. dev. of detect</td>
<td>360%</td>
<td>281%</td>
<td>124%</td>
</tr>
<tr>
<td>Nugget*</td>
<td>40%</td>
<td>43%</td>
<td>15%</td>
</tr>
<tr>
<td>Averaging scale experiment</td>
<td>100 g</td>
<td>100 g</td>
<td>0.1 g</td>
</tr>
</tbody>
</table>

Nondetects, variance, and portion of variance not explained by spatial dependence* decrease with increasing recharge.