Precipitation of U(VI) in Low-Temperature Si-Na-H$_2$O±CO$_2$±Feldspar Systems

Kathryn L. Nagy1
Neil C. Sturchio1
Christophe Darnault2
Linda Soderholm3

1 Earth and Environmental Sciences
Ashaki Rouff (now at PSI)
Burcu Uyusur
Soufiane Mekki

2 Civil and Materials Engineering
University of Illinois at Chicago

3 Chemistry Division
Argonne National Laboratory
Drew Gorman-Lewis
Suntharalingam Skanthakumar
Mark Jensen
To identify and quantify processes motivated by observations from the Hanford Site

Liu et al., 2004
Biotite Mica Dissolution: released Fe(II) that was electron donor for Cr(VI) precipitation.

Release of Fe(II) is rate-limiting dissolution step at pH > 10.

Fe(III)-oxide and aluminosilicates precipitate.

Samson et al., GCA, 2005; Nagy et al., in prep.
Homogeneous precipitates?

Heterogeneous precipitates on edges and basal surfaces

Samson et al., GCA, 2005
Quartz Dissolution at 90°C, high pH:
Nitrate Cancrinite precipitates;
Starts as a film in more recessed areas in quartz surface.

Na₈(Al₆Si₆O₂₄)(NO₃)₂ • 4H₂O

Bickmore et al., ES&T, 2001
Heterogeneous Precipitation of Nitrate Cancrinite on Quartz

0.005 m Al(OH)$_4^-$ - 24 days

0.01 m Al(OH)$_4^-$ - 13 days

pH 11.3; 2 m NaNO$_3$; 90°C

Bickmore et al., ES&T, 2001
Initial Precipitation Rates

Rate\textsubscript{ppt} (mol cancrinite/s) =

\[1.03 \pm 0.05 \times 10^{-6} [\text{Al}]^{1.22} [\text{Si}]^{0.23} \]

‘Nitrate’ Cancrinite

\[
\text{Na}_8(\text{Al}_6\text{Si}_6\text{O}_{24})(\text{NO}_3)_2 \cdot 4\text{H}_2\text{O}
\]

Bickmore et al., ES&T, 2001; GCA, 2006
U = 50 mg/L
NO$_3$ = 8,000 mg/L
Tc99 = 40,000 pCi/L
pH 3.5

U-Si species may be precursors for subsequent reactions
Aluminosilicate minerals dissolve faster in acidic and basic solutions than at neutral pH.

Samson et al., GCA, 2005; Nagy et al., in prep.
Uranium-silicates:
Alteration of spent fuel
Alteration of vitrified nuclear waste
Uranium mines

Na₂ZnSiO₄
Precipitated on vapor-altered glass

Soddyite
\((\text{UO}_2)_2(\text{SiO}_4)\cdot2\text{H}_2\text{O}\)

K-Boltwoodite
\(\text{K(UO}_2)(\text{SiO}_3)(\text{OH})\cdot1.5\text{H}_2\text{O}\)
Possible mechanism of U-Silicate formation

U(VI) speciated as $\text{UO}_2(\text{CO}_3)_3^{4-}$; $T = 80 \, ^\circ\text{C}$; $\text{pH} = 10$

Na-boltwoodite; μ-XRD and μ-XRF (Catalano et al., 2004)
53% boltwoodite, 42% uranophane;
4% soddyite; TRLFS (time-resolved laser fluorescence spectroscopy) (Wang et al. 2005)
Na-boltwoodite or uranophane; dissolution (Liu et al. 2004)

Uranyl silicate precipitation
Borehole Core Analysis

- Tank solutions diluted in vadose zone, but relative to background:
 - elevated concentration of uranium
 - lower concentration of silica

- T and pH decrease as the plume moves away from source

<table>
<thead>
<tr>
<th></th>
<th>UO$_2^{++}$ (M)</th>
<th>SiO$_2$(aq) (M)</th>
<th>pH</th>
<th>T°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tank Solution</td>
<td>1.03E-01</td>
<td>4.00E-03</td>
<td>10</td>
<td>80</td>
</tr>
<tr>
<td>Contaminated PW</td>
<td>1.85E-03</td>
<td>7.16E-04</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Uncontaminated PW</td>
<td>1.63E-07</td>
<td>4.99E-03</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Liu et al., 2004, GCA
Si Source for U-silicate formation:

Dissolution of Labradorite Feldspar: An\textsubscript{60} Ca\textsubscript{(50-70\%)} Na\textsubscript{(50-30\%)}\textsubscript{(Al,Si)}AlSi\textsubscript{2}O\textsubscript{8}

SEM image of feldspar reacted with simulated tank waste
Bates, 2004, UIC M.S. Thesis
Activity-activity diagram for contaminated pore water

Silica solubility changes

T/pH change
Approx. Tank Solution
In-situ diluted Tank Solution?
Typical Ground Water

Na-Boltwoodite: \(\text{Na[UO}_2\text{(SiO}_3\text{OH)}](\text{H}_2\text{O})_{1.5} \)

Soddyite: \((\text{UO}_2)_2(\text{SiO}_4)(\text{H}_2\text{O})_2 \)
What U-silicates form at low temperatures as a function of:
 pH, U concentration, Si concentration?
What controls homogeneous vs. heterogeneous nucleation?
What factors control and what are the kinetics?

APPROACH:

Synthesis experiments:
 with and without CO₂
 varying pH, U, Si concentrations
 presence or absence of feldspar
 effect of drying, time, and temperature

Structural & compositional analyses:
 HEXS & SAXS
 EXAFS spectroscopy
 FTIR, XRD
 Solid & solution compositions

Unifying predictive equations
The uranyl-silicato monomer complex

Possible structure of the complex

Uranyl silicate sheet in uranophane and boltwoodite. U:Si =1:1 (Burns, 2001)

May be correlated with structures observed for uranyl silicates
U-silicate solution species highest at lower pH (system without CO$_2$)

U = 0.25 M, Si = 0.25 M, NaClO$_4$ = 0.5 M with CO$_2$(g), but complexation negligible
U-silicate solution species decreases at higher pH (system with CO$_2$)

$U = 10^{-7}$ M, $Si = 5 \times 10^{-3}$ M, $NaNO_3 = 0.1$ M, $PCO_2(g) = 10^{-3.5}$ atm
Solution compositions for initial scattering experiments:

- **UIC samples**
 - 0.23 M $\text{UO}_2(\text{NO}_3)_2$
 - 0.01-0.25 M $\text{Na}_2\text{SiO}_3\cdot9\text{H}_2\text{O}$
 - U added to Si stock
 - U analysis by α-counting
 - Not analyzed by scattering

- **Sample Set 1**
 - 0.30-0.59 M $\text{UO}_2(\text{ClO}_4)_2$
 - 0.04-0.29 M $\text{Na}_2\text{SiO}_3\cdot9\text{H}_2\text{O}$
 - Si added to U stock

- **Sample Set 2**
 - 0.20-0.48 M $\text{UO}_2(\text{ClO}_4)_2$
 - 0.03-0.09 M $\text{Na}_2\text{SiO}_3\cdot9\text{H}_2\text{O}$
 - Si reagent added incrementally

Open to atmosphere; pH ~ 2-4

Precipitate increases with $\uparrow [\text{Si}]$ & $\downarrow [\text{U}]$
2nd Set of Experiments for HEXS Analysis

Sample Set 1
Sample Set 2
UIC Samples 1
UIC Samples 2
Solubility SiO2(am)

natural system

[U] M
0.0 0.1 0.2 0.3 0.4 0.5 0.6
SYNTHESIS EXPERIMENTS without CO$_2$ for initial HEXS analysis

- Prepared in glove box under Ar$_{(g)}$ atmosphere
- 0.25 M UO$_2$(ClO$_4$)$_2$
- 0.01-0.25 M Na$_2$SiO$_3$$\cdot$9H$_2$O
- Si added incrementally to U stock
- pH measured (~2.5-4)
- Sampled for analysis
 - U: α-counting
 - Si: UV-Vis & ICP-OES
- 2 sample sets:
 - LongTerm: 8 weeks
 - ShortTerm: 2 weeks
Thermodynamic modeling tells us...

Experimental conditions:

$U = 0.25 \text{ M, } Si = 0.25 \text{ M, } NaClO_4 = 0.5 \text{ M, } CO_2(g)$ excluded.

U = 0.25 M, Si = 0.25 M, NaClO$_4$ = 0.5 M, CO$_2$(g) excluded.
High Energy X-ray Scattering: Pair Distribution Function

Background-corrected PDF

Two-week experiments: Evidence for U-oligomers

11-ID-C, 91 keV
Advanced Photon Source
HEXS: Pair Distribution Function

Similar results - Little effect of time visible in the data

Eight-week experiments

Background-corrected PDF
Comparison with Hanford vadose zone:

- Relative to experimental solutions:
 - \downarrow [U]
 - \downarrow [Si]
 - \uparrow pH

Experimental conditions in the Hanford vadose zone:

- $\text{SiO}_2\text{(am)}$
- Soddyite
- Na-Boltwoodite
- Schoepite $\text{Na}_2\text{U}_2\text{O}_7$
SYNTHESIS EXPERIMENTS
with CO₂
HEXS, FTIR, XRD analysis

- Prepared on benchtop open to the atmosphere
- 0.990 M UO₂(ClO₄)₂
- 0.105 M Na₂SiO₃•9H₂O
- 50 µL U-solution (0.05 M Uᵣ)
- 950 µL Si-solution (0.1 M Siᵣ)
- pH adjusted from 2.2 to 9.0
- 4 da @ 150°C for similar pH 5.1 to 9.1 samples
- Solids analyzed for U & Si by spectrophotometry
- Solids analyzed by XRD, FTIR, and HEXS
3rd Set of Experiments for HEXS Analysis

Sample Set 1
Sample Set 2
UIC Samples 1
UIC Samples 2
Solubility SiO$_2$(am)

natural system

Sample

[U] M
Thermodynamics tells us this if we don’t assume equilibrium with amorphous silica.
...and this if we assume equilibrium with amorphous silica.
X-ray Diffraction of Room Temperature Solids – air-dried

Peaks suggest a Na-silicate phase. No obvious match with any U-silicates.

Boltwoodite U:Si = 1:1
Soddyite U:Si = 2:1

U/Si = 1.5 to 1.9
X-ray Diffraction of Solids heated at 150°C for 4 days

Boltwoodite $U:Si = 1:1$
Soddyite $U:Si = 2:1$

Pattern like low-temperature patterns

- pH 9.1
- pH 8.1
- pH 7.1
- pH 6.0
- pH 5.1

- $U/Si = 1.4$ (pH 6.0) to 2.5 (pH 9.1)

Soddyite

$U/Si = 2.6$

Indicates amorphous Si
FTIR on Room T samples, aged for 6 weeks and air-dried

The diagram illustrates the FTIR spectra of samples aged for 6 weeks and air-dried, focusing on the wavenumber (cm⁻¹) range from 4000 to 400. The absorbance peaks are labeled for different pH conditions: pH 6.93, pH 8.03, and pH 9.02. Key features include:

- **$	ext{SiO}_4^{4-}$ peak** for Na-boltwoodite.
- **$	ext{UO}_2^{2+}$ peak** for Na-boltwoodite.
- **$	ext{SiO}_4^{4-}$ peak** of Na-weeksite shifting or disappearing with pH.
- **$	ext{SiO}_4^{4-}$ peak** of soddyite, weeksite, or Na-boltwoodite.
- **OH⁻ double peak**, indicative of Na-weeksite, begins to disappear at pH 9.
- **H₂O** peak typical of boltwoodite.

The FT-IR microspectrometer (IlluminatIR) was used with diamond total attenuated reflectance (ATR) in an open atmosphere.
HEXS: Pair Distribution Function – Room T Precipitates
Mounted after 60 minutes; analyzed within 24 hours

Background-corrected PDF
HEXS: Pair Distribution Function – 150°C Precipitates

Reacted 4 days; air-dried

Background-corrected PDF
Pair Distances for 150°C Precipitates

- Soddyite
- Boltwoodite (40% Na)
- Weeksite (not Na)

- pH 9.1
- pH 5.1
Average Pair Distances for Room T Precipitates

- Uranophane
- Weeksite
- Boltwoodite (40% Na)
- Soddyite
Other work in progress:

<table>
<thead>
<tr>
<th></th>
<th>U [M]</th>
<th>Si [M]</th>
<th>CO2</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0E-03</td>
<td></td>
<td>atm</td>
<td>6.5</td>
</tr>
<tr>
<td>2</td>
<td>1.0E-03</td>
<td>1.0E-03</td>
<td>atm</td>
<td>6.5</td>
</tr>
<tr>
<td>3</td>
<td>1.0E-03</td>
<td></td>
<td>atm</td>
<td>9.0</td>
</tr>
<tr>
<td>4</td>
<td>1.0E-03</td>
<td></td>
<td>N/A</td>
<td>9.0</td>
</tr>
<tr>
<td>5</td>
<td>1.0E-04</td>
<td></td>
<td>atm</td>
<td>6.5</td>
</tr>
<tr>
<td>6</td>
<td>1.0E-04</td>
<td>1.0E-03</td>
<td>atm</td>
<td>6.5</td>
</tr>
<tr>
<td>7</td>
<td>1.0E-04</td>
<td></td>
<td>atm</td>
<td>9.0</td>
</tr>
<tr>
<td>8</td>
<td>1.0E-04</td>
<td></td>
<td>N/A</td>
<td>9.0</td>
</tr>
<tr>
<td>9</td>
<td>1.0E-05</td>
<td></td>
<td>atm</td>
<td>6.5</td>
</tr>
<tr>
<td>10</td>
<td>1.0E-05</td>
<td></td>
<td>atm</td>
<td>6.5</td>
</tr>
<tr>
<td>11</td>
<td>1.0E-05</td>
<td>1.0E-03</td>
<td>atm</td>
<td>6.5</td>
</tr>
<tr>
<td>12</td>
<td>1.0E-05</td>
<td></td>
<td>atm</td>
<td>9.0</td>
</tr>
<tr>
<td>13</td>
<td>1.0E-05</td>
<td></td>
<td>N/A</td>
<td>9.0</td>
</tr>
<tr>
<td>14</td>
<td>1.0E-06</td>
<td></td>
<td>atm</td>
<td>6.5</td>
</tr>
<tr>
<td>15</td>
<td>1.0E-06</td>
<td>1.0E-03</td>
<td>atm</td>
<td>6.5</td>
</tr>
<tr>
<td>16</td>
<td>1.0E-06</td>
<td></td>
<td>atm</td>
<td>9.0</td>
</tr>
<tr>
<td>17</td>
<td>1.0E-06</td>
<td></td>
<td>N/A</td>
<td>9.0</td>
</tr>
<tr>
<td>18</td>
<td>1.0E-07</td>
<td></td>
<td>atm</td>
<td>6.5</td>
</tr>
<tr>
<td>19</td>
<td>1.0E-07</td>
<td>1.0E-03</td>
<td>atm</td>
<td>6.5</td>
</tr>
<tr>
<td>20</td>
<td>1.0E-07</td>
<td></td>
<td>atm</td>
<td>9.0</td>
</tr>
<tr>
<td>21</td>
<td>1.0E-07</td>
<td></td>
<td>N/A</td>
<td>9.0</td>
</tr>
</tbody>
</table>

EXAFS spectroscopic analysis of U uptake on labradorite feldspar
- at pH 6.5 and 9.0
- with and without CO$_2$
- with and without added Si

U LIII edge
12-BM, APS
Other work in progress:

1-D and 2-D column flow:

feldspar & quartz substrates

U-solutions guided by experiments

Image analysis of flow (fluorescence, luminescence)
Summary: U-Silicate Nucleation and Precipitation

Solution compositional space is being refined with respect to merging experimental and analytical needs with simulation of reality.

High Energy X-ray Scattering (HEXS) shows systematic, reproducible, but subtle changes in U-Si and U-U pair distances with changes in pH, [U], and [Si].

FTIR is sensitive to subtle changes in bonding environment of U in mixed precipitates.

Little change in precipitate structures is observed at short times (to 8 weeks).

Precipitate structures are changed upon drying.

Increasing temperature, thought to accelerate rates of crystallization, does not appear to have equal effect at all pHs.