Geophysical Investigations at the Old Rifle IFC Site

Kenneth H. Williams, Susan S. Hubbard, Jillian F. Banfield, Andreas Kemna, Lucie N’Guessan, and Philip E. Long
Objective

Demonstrate the utility of geophysical methods for characterizing structure\(^1\) and monitoring processes\(^2\) over field-relevant scales

Hypothesis\(^2\): Microbial processes induce *physical property changes* that can be detected using time-lapse geophysical methods

Challenges:
- Unfavorable lithology
- Competing metabolic processes
- Non-unique signatures

Rifle, CO
Why Use Geophysics?

- The same reason the oil industry does…
 - Define structure
 - Highlight production changes
Characterization...
Assessing Vertical Heterogeneity: Borehole logging
Assessing Vertical Heterogeneity: Borehole logging
Assessing Vertical Heterogeneity: *Borehole logging*

Correlate response with recovered materials.
Monitoring...
Sulfides: electro-active + surface charge

Complex Resistivity (CR)

Clays: EDL ions impede electrolytic flow
Sulfides: electro-active + surface charge

Complex Resistivity (CR)

Applied voltage \rightarrow Current flow (I)
Sulfides: electro-active + surface charge

Complex Resistivity (CR)

- Cation
- Anion
- FeS

Measured Potential (V)
Sulfides: electro-active + surface charge

Complex Resistivity (CR)
Impact of FeS Precipitation on CR Signals

- ~2% FeS
- ~0.5% FeS
‘Field-Scale’ CR Monitoring at Old Rifle, CO
‘Field-Scale’ CR Monitoring at Old Rifle, CO
Surface CR Results: Identical Phase Scale
Surface CR Results: *Expanded Phase Scale*
Constraining CR Results: Geochemistry

Fe^{2+} and HS^- vs. Time

2006 Parallel to Flow
Constraining CR Results: Geochemistry

4-weeks

2006 Parallel to Flow
Constraining CR Results: Geochemistry
Constraining CR Results: Geomicrobiology

M-21: FeS-encrusted tubing

2006 Parallel to Flow
Constraining CR Results: Geomicrobiology

M-21: FeS-encrusted tubing

2006 Parallel to Flow
Self-Potential Monitoring

Self-Potential (SP): The generation of voltage potentials within earth materials, which can be measured between electrodes located at the surface or within boreholes.
Borehole SP Monitoring: Conceptual Model
Borehole SP Monitoring: Conceptual Model

Cathode: $\text{Cu}^{2+} + 2e^- \rightarrow \text{Cu}^0; E^0 = 0.34V$

Anode: $\text{Cu}^0 + HS^- \rightarrow \text{CuS} + 2e^- + H^+$
$E^0 = -0.338V$

Galvanic Model:
Borehole SP Monitoring: Conceptual Model

Cathode: \(Cu^{2+} + 2e^- \rightarrow Cu^0; \ E^0 = 0.34V \)

Anode: \(Cu^0 + HS^- \rightarrow CuS + 2e^- + H^+ \)
\(E^0 = -0.338V \)

Galvanic Model:

\[\begin{array}{c}
\text{Cathode} \\
\downarrow \\
Cu^{2+} \\
\uparrow \\
\text{Anode} \\
\end{array}\]

\[\begin{array}{c}
\text{Cathode} \\
\downarrow \\
Cu^0 \\
\uparrow \\
\text{Anode} \\
\end{array}\]

\[\text{HS}^-, \ CuS \]

Elapsed Time (hr)
Borehole SP Monitoring: Conceptual Model

Cathode: \(\text{Cu}^{2+} + 2e^- \rightarrow \text{Cu}^0; \ E^0 = 0.34V \)

Anode: \(\text{Cu}^0 + HS^- \rightarrow \text{CuS} + 2e^- + H^+ \)
\(E^0 = -0.338V \)

Galvanic Model:

Cathode
- \(\text{Cu}^2+ \)
- \(\text{Cu}^0 \)

Anode
- \(HS^- \)
- \(CuS \)

Elapsed Time (hr)

0 100 200 300 400
Borehole SP Monitoring: *Field Data*

SP Benefits:
- Rapid logging interval (here, 6-hr)
- High spatial resolution (25-cm)
- Good correlation: $[\text{HS}^-]$, E_h

Discrete electrode (5.0-m bgs)

- S^2-
- SP

SRB dominant...
Borehole SP Monitoring: Field Data

SP Benefits:
- Rapid logging interval (here, 6-hr)
- High spatial resolution (25-cm)
- Good correlation: [HS⁻], E_H

~2.5m downgradient

Discrete electrode (5.0-m bgs)

SRB dominant...
Borehole SP Monitoring: Field Data

SP Benefits:
- Rapid logging interval (here, 6-hr)
- High spatial resolution (25-cm)
- Good correlation: \([HS^-], E_H\)
Borehole SP Monitoring: *Field Data*

Relevance to uranium removal...
Borehole SP Monitoring: Field Data

Iron-reduction is dominant TEAP

Impact of location and TEAP-dependent geochemistry...

Discrete electrodes (both 5.0-m bgs)

Sulfate-reduction is dominant TEAP
Borehole SP Monitoring: *Field Data*

Impact of location and TEAP-dependent geochemistry...

![Graph showing the relationship between electrode potential (E_{cell}) and sulfide (Fe^{2+}) concentration.](image)
Conclusions

“Geophysical methods represent a key component of characterization and monitoring activities at the DOE IFC sites”

Old Rifle Site:

CR and SP methods are valuable tools for monitoring subsurface changes accompanying bioremediation

CR \rightarrow **Mineralogy** (*FeS* precipitation)

SP \rightarrow **Geochemistry** (*HS* and *Fe$^{2+}$* gradients)
Acknowledgments

Field sampling and analysis:
Jenny Druhan, Tom Resch, Evan Arntzen (all PNNL)

Electron Microscopy:
Alice Dohnalkova and Bruce Arey (EMSL; PNNL)

Funding:
DOE’s EMSP and ERSP Program (Susan Hubbard and Jill Banfield, co-PI’s)
Linking Characterization and Monitoring: *Heterogeneity*
Linking C & M...
Linking Characterization and Monitoring: *Heterogeneity*

Impact of heterogeneity on temporal geophysical response...
Linking Characterization and Monitoring: *Heterogeneity*

Impact of heterogeneity on temporal geophysical response...