Cr(III) Oxidation Coupled With Microbially-Mediated Mn(II) Oxidation

Youxian Wu and Baolin Deng
Department of Civil and Environmental Engineering, University of Missouri-Columbia, MO 65211

Acknowledgements

Conclusions

• Cr(VI) can be reduced to less toxic and mobile Cr(III) species through abiotic and biological processes. Reductive immobilization of Cr(VI) has been widely explored as a cost effective technology for site remediation;
• Mn oxides are regarded as primary oxidants for Cr(III) oxidation in the environment;
• Generation of Mn oxides from Mn(II) in natural environments is believed to be biologically catalyzed.

Methods

Pseudomonas putida was obtained from ATCC. Microbial experiments were conducted in modified LEP medium with 10 mM HEPES buffer (pH 7) in a shaker at 150 rpm at 26°C. Cell density was determined using modified LBB assay (Boogerd and de Vrind, 1987). Aliquots of sample were filtered through 0.2 μm Anotop filters. Cr(VI) was measured using diphenyl carbazide (colorimetric). Total soluble Mn and Cr were measured with ICP.

Hypothesis

The presence of Mn-oxidizing bacteria can enhance Cr(III) oxidation to Cr(VI).

Experiments and Results

Experiment 1: Cr(III) oxidation by *P. putida*

Goal: to compare abiotic and biotic Cr(III) oxidation.
A: *P. putida*+Cr(III)+Mn(II); B: *P. putida*+Cr(III); C: Sterile A (Figs. 1 & 2)

Experiment 2: Effects of Mn(II) addition

Goal: to determine the effect of Mn(II) concentrations on Cr(III) oxidation
Initial Cr(III): 0.05 mM; data used from analyses of samples at the 8th day of incubation (Fig. 3). T-Cr(VI)=S-Cr(VI) (soluble) + adsorbed Cr(VI)

Experiment 3: Cr(III) concentrations

Goal: to determine the effect of Cr(III) concentrations on formation of Mn oxides by *P. putida*

Initial Mn(II): 0.1 mM for all treatments. Data calculated from analyses of samples at the 6th day of incubation (Fig. 4)

Future work

• Can the reduced compounds such as FeS affect Cr(III) oxidation? Do clay minerals such as FeOOH, kaolin affect Cr oxidation?
• Can the Mn(II)-oxidizing bacteria directly oxidize Cr(III) to Cr(VI) without pre-formation of MnOx?
• Mechanism of Cr(III) oxidation in presence of metal-oxidizing bacteria

Acknowledgements

The work is sponsored by the US Department of Energy through EMSP program (project #70088).