Title: The Argonne National Laboratory Subsurface Biogeochemical Research Program SFA: Wetland Hydrobiogeochemistry Kenneth Kemner^{1*}, Pamela Weisenhorn¹, Maxim Boyanov^{1,2}, Daniel Kaplan³, John Seaman³, Dien Li³, Brian Powell⁴, Angelique Lawrence⁵, Christopher Henry¹, Ted Flynn⁶, Man-Jae Kwon⁷, Sen Yan⁸, Yanxin Wang⁸, Yamin Deng⁸, Yiran Dong⁸, Nancy Hess⁹, Carlo Segre¹⁰, Bhoopesh Mishra¹¹, Cara Santelli¹², Crystal Ng¹², Martial Taillefert¹³, Jeff Catalano¹⁴, Daniel Giammar¹⁴, Christof Meile¹⁵, Edward J. O'Loughlin¹ Argonne National Laboratory, Lemont, Illinois; ²Bulgarian Academy of Science, Bulgaria; ³Savannah River National Laboratory, Aiken, South Carolina; ⁴Clemson University, Clemson, South Carolina; ⁵Florida International University, Miami, Florida; ⁶California Department of Water Resources, Sacramento, California; ⁷Korea University, Seoul, Korea; ⁸China University of Geosciences, Wuhan, China; ⁹EMSL, Pacific Northwest National Laboratory, Richland, Washington; ¹⁰Illinois Institute of Technology, Chicago, Illinois; ¹¹University of Leeds, Leeds, England; ¹²University of Minnesota, Minneapolis, Minnesota; ¹³Georgia Technical University, Atlanta, Georgia; ¹⁴Washington University, St. Louis, Missouri; ¹⁵University of Georgia, Athens, Georgia Contact: (kemner@anl.gov) Project Lead Principle Investigator (PI): Ken Kemner BER Program: SBR **Project**: Argonne Wetland Hydrobiogeochemistry SFA **Project Website**: https://doesbr.org/documents/ANL_SFA_flyer.pdf https://www.anl.gov/bio/project/subsurface-biogeochemical-research Project Abstract: Within wetlands, movement of water and biogeochemically catalyzed transformations of its constituents determine the mobility of nutrients and contaminants, the emission of greenhouse gasses into the atmosphere, carbon (C) cycling, and the quality of water itself. The long-term objective of the Argonne Wetland Hydrobiogeochemistry Scientific Focus Area (SFA) is the development of a mechanistic understanding and ability to model the coupled hydrological, geochemical, and biological processes controlling water quality in wetlands and the implications of these processes for watersheds commonly found in humid regions of the United States. To accomplish this, the Argonne Wetland Hydrobiogeochemistry SFA studies hydrobiogeochemistry with a focus on a riparian wetland field site within Tims Branch at the Savannah River Site. This site is representative of many riparian wetlands found in humid regions of the Southeast that have C-rich soils and high Fe content. However, it is unique in that it received large amounts of contaminant metals and uranium as a result of previous industrial- scale manufacturing of nuclear fuel and target assemblies. Understanding the function of the wetlands in relation to water quality, including the concentration of metals and uranium within the soluble and particulate components of groundwater and surface waters of Tims Branch addresses the goal of the SBR Program to advance a robust, predictive understanding of watershed function. The overarching hypothesis of our work is that hydrologically driven biogeochemical processes that create redox dynamic conditions from the nanometer to meter scales are a major driver of groundwater and surface water quality within riparian wetland environments. We identified three major components of the Tims Branch riparian wetland that represent critical zones containing hydrologically driven biogeochemical drivers, which determine water quality: *sediment, rhizosphere, and stream*. These three components are interdependent and are considered as a whole for a systems-level