Title: Ecosystem Warming Accelerates Peatland Carbon Loss: Findings from the First Three Years of SPRUCE

Natalie A. Griffiths,1* Paul J. Hanson,1 Colleen M. Iversen,1 Richard J. Norby,1 Stephen D. Sebestyen,2 Jana R. Phillips,1 Jeffrey P. Chanton,3 Randall K. Kolka,2 Avni Malhotra,4 Keith C. Oleheiser,1 Jeffrey M. Warren,1 Xiaoying Shi,1 Xiaojuan Yang,1 Jiafu Mao,1 Daniel M. Ricciuto1

1Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN;
2USDA Forest Service, Northern Research Station, Grand Rapids, MN;
3Florida State University, Tallahassee, FL;
4Stanford University, Stanford, CA

Contact: (griffithsna@ornl.gov)
Project Lead Principal Investigator (PI): Paul J. Hanson
BER Program: TES
Project: TES SFA at Oak Ridge National Laboratory
Project Website: https://mnspruce.ornl.gov/

Project Abstract: One-third of the Earth’s terrestrial C is found in peatland ecosystems, and the majority of this C has accumulated belowground over millennia. Because of the disproportionate importance of peatlands to the global terrestrial C budget, it is critical to understand how peatland C responds to warming and elevated atmospheric CO2. The Spruce and Peatland Responses Under Changing Environments (SPRUCE) project is evaluating the effects of warming and elevated CO2 on an ombrotrophic bog in northern Minnesota using a novel ecosystem-scale experiment: 10 enclosures (12-m diameter, 8-m tall) that span a range of warming conditions (+0 ºC, +2.25 ºC, +4.5 ºC, +6.75 ºC, +9 ºC) at ambient CO2, and replicated at elevated CO2 (+500 ppm). The experiment began in August 2015 and is planned to run for a decade. Here, we examined the response of peatland net C flux to warming and elevated CO2 during the first three full years of the experiment (2016-2018). Net C flux was calculated from measurements of tree and shrub net primary production (NPP; above and belowground), Sphagnum NPP, CO2 and CH4 efflux from the bog surface, and total organic carbon (TOC) and dissolved inorganic carbon (DIC) efflux in lateral outflow. Overall, there was a strong linear response of C flux to warming with a net C loss of 34.5 g C m⁻² y⁻¹ °C⁻¹. Peatland C loss was primarily driven by decreased Sphagnum NPP and increased losses of CO2 and CH4. Sphagnum was the predominant contributor to aboveground NPP in this peatland, and production decreased drastically in 2017 and 2018 with warming due to reduced growth and loss of ground cover. Both CO2 and CH4 losses increased with warming in all years, and while the magnitude of CO2 efflux was much larger than that of CH4, the response of CH4 efflux to warming was stronger. In summary, we found that the bog switched from a net C sink under ambient conditions to a net C source with warming. Evaluation of peatland net C flux will continue for the duration of SPRUCE to examine if: 1) the peatland continues to be a source of C under warming, 2) the response continues to be linear, and 3) effects of elevated CO2 begin to emerge.