How do Whole-Ecosystem Warming and Elevated Atmospheric Carbon Dioxide Concentrations Affect Peatland Methane Production

Anya Hopple1,2, Rachel Wilson3, Glenn Woerndle1, Cassandra Zalman1, Jeff Chanton3, Paul J. Hanson4, Jason K. Keller1*, and Scott D. Bridgham2

1 Chapman University, Orange, CA; \\
2 University of Oregon, Eugene, OR; \\
3 Florida State University, Tallahassee, FL; \\
4 Oak Ridge National Laboratory, Oak Ridge, TN

Contact: jkeller@chapman.edu

BER Program: TES
Project: University Award

Peatlands contain one-third of the world’s soil carbon (C). Much of this C is stored deep in the soil profile, where water-logged and anaerobic conditions have allowed C to accumulate for thousands of years. It is currently unknown if these vast C stores will remain belowground or if they will be respired as carbon dioxide (CO\textsubscript{2}) and/or methane (CH\textsubscript{4}) in the face of ongoing global change. Understanding, and modeling, the future fate of this soil C remains a pressing issue in global biogeochemistry. We assessed the response of CO\textsubscript{2} and CH\textsubscript{4} production in a boreal peatland following 13 months of deep-peat warming (DPW), 16 months of subsequent whole-ecosystem warming (surface and deep warming; WEW), and 4 months of elevated atmospheric CO\textsubscript{2} concentrations as part of the Spruce and Peatland Responses Under Changing Environments (SPRUCE) project in northern Minnesota, USA. This project includes 5 temperature treatments that warmed the entire 2 m peat profile from 0 to +9 °C above ambient temperature with and without elevated atmospheric CO\textsubscript{2} concentrations (~850 ppm). Soil cores were collected at multiple depths beneath the peatland surface (-20 to -200 cm) from each experimental enclosure at SPRUCE and anaerobically incubated at in situ temperatures for 1-2 weeks. Following DPW, only CH\textsubscript{4} production from surface depths (e.g., -30 cm) was positively correlated with elevated temperature. However, during WEW, both surface and deep peat CH\textsubscript{4} production increased with rising temperature. There was little indication that elevated CO\textsubscript{2} influenced CH\textsubscript{4} production. Surface peat had greater CH\textsubscript{4} production than deeper peat, implying that increased CH\textsubscript{4} emissions in response to warming observed in the field were largely driven by surface peat dynamics. Radiocarbon analyses suggest that CO\textsubscript{2} and CH\textsubscript{4} are produced from the decomposition of both young and ancient C sources. The CO\textsubscript{2}:CH\textsubscript{4} ratio was inversely correlated with temperature across all depths during WEW, indicating that the entire peat profile is becoming more methanogenic with warming. This result was supported by \textit{in situ} measurements of porewater CO\textsubscript{2} and CH\textsubscript{4} concentrations which displayed the same trend. Thus, our results suggest that the vast C stores at depth in peatlands are responsive to warming only after a significant lag period, but that ecosystem responses remain largely driven by surface peat.