Distribution and Dynamics of Aboveground Biomass in Second Growth Tropical Forests of Puerto Rico

Douglas Morton1*, Sebastian Martinuzzi1,2, Michael Keller3,4, Bruce Cook1, and Eileen Helmer5

1NASA Goddard Space Flight Center, Greenbelt, MD
2University of Wisconsin, Madison, WI
3USDA Forest Service, International Institute of Tropical Forestry, San Juan, PR
4NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA
5USDA Forest Service, Rocky Mountain Research Station, Fort Collins, CO

Contact: douglas.morton@nasa.gov

BER Program: TES
Project: NGEE-Tropics

Large-scale agricultural abandonment in the 20th century created a mosaic of second growth forests across the island of Puerto Rico, distributed across a range of topographic, edaphic, and climatic conditions. Here, we combined forest inventory data and remote sensing products from the NASA Goddard Lidar, Hyperspectral, and Thermal (G-LiHT) Airborne Imager (www.gliht.gsfc.nasa.gov) to evaluate biomass accumulation in second growth forests across gradients of forest age, soils, and climate. A total of 78 Forest Inventory and Analysis (FIA) plots from the USDA Forest Service across the island, measured in 2016 and 2017, were combined with G-LiHT lidar data from 2017 to model biomass as a function of lidar-derived forest structure. Research plots from state and national forest lands were used to evaluate the lidar-biomass model for older second growth and mature forest types. In addition, 2017 G-LiHT data were compared with existing lidar coverage from 2011 and 2013 to estimate changes in canopy structure from branch and tree fall events over four to seven-year intervals. Lidar data offer a novel constraint on the size and frequency distributions of canopy change, in combination with estimated forest mortality from inventory plots. The information presented here is a key step towards improving the representation of tropical forest dynamics in ecosystem models, including the mechanics of forest succession that determine biomass accumulation in second-growth forests.