Drivers and Mechanisms of Tree Mortality in Moist Tropical Forests

Nate McDowell1, Craig Allen2, Kristina Anderson-Teixera3,4, Paulo Brando5,6, Roel Brienen7, Jeff Chambers8, Brad Christoffersen9, Stuart Davies9, Chris Doughty10, Alvaro Duque11, Fernando Espirito-Santo12, Rosie Fisher13, Clarissa Fontes14, David Galbraith, Devin Goodson15, Charlotte Grossiord14, Henrik Hartmann16, Jennifer Holm9, Daniel Johnson15, Abd. Rahman Kassim17, Michael Keller18,19,20, Charlie Koven8, Lara Kueppers6,21, Tomo’omi Kumagai22, Yadvinder Malhi23, Sean McMahon3, Maurizio Mencuccini24, Patrick Meir25,26, Paul Moorcroft27, Helene Muller-Landau28, Oliver L. Phillips7, Thomas Powel8, Carlos Sierra16, John Sperry29, Jeff Warren30, Chonggang Xu15, and Xiangtao Xu31

1Pacific Northwest National Laboratory, Richland, WA
2U.S. Geological Survey, Fort Collins Science Center, Los Alamos, NM
3Smithsonian Tropical Research Institute, Washington, DC
4Smithsonian Conservation Biology Institute, Front Royal, VA
5Woods Hole Research Center, Falmouth MA
6Instituto de Pesquisa Ambiental de Amazonia, Brasilia, Brazil
7University of Leeds, Leeds, UK
8Lawrence Berkeley National Laboratory, Berkeley, CA
9University of Texas Rio Grande Valley, Edinburg, TX
10Northern Arizona University, Flagstaff AZ
11Universidad Nacional de Columbia, Medellin, CO
12University of Lancaster, Lancaster, UK
13National Center for Atmospheric Research, Boulder, CO
14University of California, Berkeley, CA
15Los Alamos National Laboratory, Los Alamos, NM
16Max Plank Institute for Biogeochemistry, Jena, Germany
17Forest Research Institute Malaysia, Selangor, Malaysia
18International Institute of Tropical Forestry, USD, San Juan, PR
19Embrapa Agricultural Informatics, Brasilia, Brazil
20Jet Propulsion Laboratory, Pasadena, CA
21Energy and Resources Group, University of California, Berkeley, CA
22The University of Tokyo, Japan
23University of Oxford, UK
24University of Barcelona, Spain
25Australian National University, Canberra Australia
26University of Edinburgh, UK
27Harvard University, Cambridge
28Smithsonian Tropical Research Institute, Panamá, Panamá
29University of Utah, Salt Lake City, UT
30Oak Ridge National Laboratory, Oak Ridge, TN
31Princeton University, Princeton, NJ

Contact: nate.mcdowell@pnnl.gov

BER Program: TES
Project: NGEE-Tropics
Project Website: https://ngree-tropics.lbl.gov/
Tree mortality rates appear to be increasing in moist tropical forests (MTFs) with significant carbon cycle consequences. We review the state of knowledge regarding MTF tree mortality, create a conceptual framework with testable hypotheses regarding the drivers, mechanisms, and interactions that may underlie increasing MTF mortality rates, and identify next steps for improved understanding and reduced prediction. Increasing mortality rates are associated with rising temperature and vapor pressure deficit, liana abundance, drought, wind events, fire, and possibly CO₂ fertilization-induced increases in stand thinning or acceleration of trees reaching larger, more vulnerable heights. The majority of these mortality drivers may kill trees in part through carbon starvation and hydraulic failure. The relative importance of each driver is unknown. High species diversity may buffer MTFs against large-scale mortality events, but recent and expected trends in mortality drivers give reason for concern regarding increasing mortality within MTFs. Models of tropical tree mortality are advancing representation of hydraulics, carbon, and demography, but require more empirical knowledge regarding the most common drivers and their subsequent mechanisms. We outline critical datasets and model developments required to test hypotheses regarding the underlying causes of increasing MTF mortality rates, and improve prediction of future mortality under climate change.