Coastal Wetland Carbon Sequestration in a Warmer Climate

Pat Megonigal1*, Genevieve Noyce1, Roy Rich1, Matthew Kirwan2, Ellen Herbert3, Peter Thornton4, Teri O’Meara4, Glenn Guntenspergen5, Joshua Jones5, and Paul Dijkstra3

1Smithsonian Environmental Research Center
2Virginia Institute of Marine Sciences
3Northern Arizona University
4Oak Ridge National Laboratory
5US Geologic Survey

Contact: megonigalp@si.edu

BER Program: TES
Project: University Award

Coastal wetlands are global hotspots of carbon storage. The future sink strength and carbon stock stability of these systems is uncertain because global change drivers such as temperature and elevated CO2 perturb the complex biotic and abiotic feedbacks that drive high rates of soil carbon sequestration. Despite the leverage these ecosystems exert over the global carbon cycle, the dynamics of coastal wetland carbon pools are not presently represented in Earth system models.

In June 2016, we initiated an in situ, active, whole-ecosystem warming experiment and two integrated modeling activities focused on coastal wetlands. The experiment has a gradient design with four aboveground and soil warming treatments ranging from 0 to +5.1°C, to a soil depth of 1.5 m. Elevated CO2 is crossed with temperature at the treatment extremes (0, +5.1°C). Replicate transects (n=3) are located in each of two plant communities that vary in flooding frequency.

C3 and C4 communities responded differently to warming. Net primary production (NPP) in the C3 community increased initially at +1.7°C, but changed little with additional warming. By contrast, NPP in the C4 community declined monotonically with increasing warming. Different responses may be due to greater heat-related stress in the relatively dry conditions of the C4 site compared to the C3 site. Belowground NPP in the C3 community doubled at +1.7°C, but declined with additional warming. The decline in belowground NPP was entirely compensated by higher aboveground NPP, which drove a decline in the root:shoot ratio. Nitrogen fertilization produces the same pattern in an elevated CO2 x N study at our site (Langley et al. 2009), suggesting that the decline in root:shoot ratio is a response to a warming-induced rise in N mineralization rates. Plants typically shift growth allocation to aboveground tissue when N limitation is relieved. The C4 community was generally less responsive to warming, particularly above +1.7°C. Elevated CO2 increased total NPP at both the +0°C and +5.1°C treatments, especially belowground NPP at +5.1°C.

CH4 emissions increased non-linearly with temperature and gross primary production in both plant communities. Elevated CO2 significantly decreased CH4 emissions at +0 and +5.1°C, which is likely due to higher root biomass, increased O2 flux o from roots to the rhizosphere, and stimulation of aerobic CH4 oxidation.

Our initial results suggest that warming alone will decrease soil C sequestration due to a decline in root production, and increase CH4 emissions, causing net radiative forcings. However, elevated CO2 may offset these effects in C3-dominated plant communities.