Introduction

- The molecular-scale speciation and reactivity of U(IV) products of microbial U(VI) reduction is crucial to the stability and fate of U in naturally reduced sediments and to the success of in-situ bioremediation strategies.
- Uraninite (UO₂) and U(IV) bound to biomass (i.e., monomeric U(IV)) are products of microbial U(VI) reduction in the field.
- Biogeochemical processes, molecular structure and composition, and diffusive transport processes can profoundly affect the stability of U(IV) species in subsurface environments.
- This portion of the SLAC SFA project has integrated laboratory and field scale experiments to assess the reactivity of U(IV) species.

Objectives

1. Measure the mobilization of U from U(IV) species under different chemical conditions.
2. Evaluate the effect of groundwater cations on the rates and mechanisms of UO₂ dissolution under environmentally relevant conditions.
3. Identify the impact of diffusive limitations on the oxidative dissolution of UO₂ at experimental conditions relevant to uranium-contaminated aquifers.
4. Quantify UO₂ dissolution rates in situ in the subsurface.

Hypotheses

- Different U(IV) species respond to chemical extractants in unique ways that can serve as a foundation toward understanding their reactivity in bio-reduced sediments.
- Groundwater cations can interact with UO₂ in subsurface environments to increase its stability.
- The rate of U release resulting from oxidative UO₂ dissolution limitations will control diffusive transport limitations.
- Dissolution of UO₂ in subsurface aquifers rich in carbonate proceeds via oxidation and loss of surface U atoms and U(IV) does not accumulate in corrosion products.

Mobilization of U from Different U(IV) Species

- Synthesis of U(VI) and molecular U(OH)₄ has similar low degrees of mobilization in water soluble, ion exchangeable, and ligand extractable experiments. These behaviors of biogenic U(IV) were similar to those observed in U(VI) and monomeric U(IV).
- Monomeric U(IV) was more susceptible than biogenic UO₂ to oxidative mobilization.

Effect of Groundwater Cations on UO₂ Dissolution

- UO₂ dissolved from a suspension in water 100 mM NaCl, pH 8.3, in the absence of NaCl, 45% monomeric U(IV) and 55% unreacted UO₂.
- EDDS, and chemical extractions.
- Efflux from field experiments performed at the Old Rifle, Colorado site.
- Zn: supersaturation with respect to ZnCO₃.
- Two types of biogenic UO₂ obtained from SSF and Shewanella oneidensis.
- UO₂ dispersed from synthetic UO₂ in the subsurface and strongly inhibit its oxidative dissolution.

Effect of Diffusive Limitations on UO₂ Dissolution

- Continuous stirred reactor was used at 0.01 M MOPS buffer at pH 7.8, residence time = 24 hours.
- UO₂ placed in dialysis-covered membrane tubes as suspensions or embedded in polyacrylamide gels (gel pucks) for mass balance measurements.
- Two types of biogenic UO₂ obtained from Shewanella oneidensis strain MR-1.
- UO₂ deployed for 270 and 630 months in wells B-02 (oxic well) and P-103 (naturally reducing).

Materials

- Synthetic U(VI)
- Biogenic UO₂ (consisted of 55% biogenic UO₂ and 45% monomeric U(IV))
- These materials were first acid digested to determine total U content.

Chemical Extractions

- Water soluble: Deionized water (0.01 M MOPS buffer at pH 7.8, residence time = 24 hours)
- Ion exchangeable: Ammonium-nitrate: 0.01 M NH₄NO₃ + 0.01 M MOPS buffer at pH 7.8, residence time = 24 hours
- Ligand extractable: Sodium Fluoride (0.1 M NaF + 0.01 M MOPS buffer at pH 7.8, residence time = 24 hours)

Conclusions

- Water soluble UO₂ dissolved in water 100 mM NaCl, pH 8.3, in the absence of NaCl, 45% monomeric U(IV) and 55% unreacted UO₂.
- EDDS, and chemical extractions.
- Efflux from field experiments performed at the Old Rifle, Colorado site.
- Zn: supersaturation with respect to ZnCO₃.
- Two types of biogenic UO₂ obtained from SSF and Shewanella oneidensis strain MR-1.
- UO₂ deployed for 270 and 630 months in wells B-02 (oxic well) and P-103 (naturally reducing).

Objectives

1. To study the rates and processes controlling oxidative dissolution of UO₂ in aquifers with diffusive limitations to mass transfer.
2. To develop a decay model for biogenic UO₂ dissolution over long-time-scales (e.g., 5 years for complete dissolution).

Hypotheses

- Different U(IV) species respond to chemical extractants in unique ways that can serve as a foundation toward understanding their reactivity in bio-reduced sediments.
- Groundwater cations can interact with UO₂ in subsurface environments to increase its stability.
- The rate of U release resulting from oxidative UO₂ dissolution limitations will control diffusive transport limitations.
- Dissolution of UO₂ in subsurface aquifers rich in carbonate proceeds via oxidation and loss of surface U atoms and U(IV) does not accumulate in corrosion products.

Impact

- Interactions with divalent groundwater cations can affect the longevity of UO₂ and the mobilization of U(IV) in remediated subsurface environments.
- Diffusive limitations to transport can substantially prolong the lifespan of UO₂ at oxidic conditions. Laboratory-measured rates can be useful for predicting U mobility in diffusion-limited field settings once limitations are taken into account.
- Monomeric U(IV) and biogenic UO₂ respond similarly to complexing and ion exchanging extractants, but monomeric U(IV) is more labile at oxidizing conditions.

Ongoing Work

- Aqueous chemistry experiments to investigate the mobilization of U in biogenic UO₂ with and without biogenic humic material.
- XAS characterization of synthetic UO₂, biogenic UO₂, and monomeric U(IV) before and after chemical extractions.
- Chemical extractions of sediments and biogenic UO₂ materials obtained from field experiments performed at the Old Rifle, Colorado site.

Products/Papers

- Seven presentations at national and international conferences.

Acknowledgements

We wish to thank Carol Morris, Danny Murray and Ray Rimer (SBL) for their assistance with neutron activation analysis handling and Sam Webb for his advice and assistance with data collection. Charles J. Barron, Kai-Uwe Unich, Yin Weng, and Lisa Blue have contributed to the laboratory work and data analyses presented in this poster. We thank Dick Beynon and Dave Troicki (S.M. Stoller Corp.) for their assistance with logistics at the Rifle field site. Research was supported by DOE-BER through the SLAC Science Focus Area (SFA) program.